Tibolone decreases Lipoprotein(a) levels in postmenopausal women: A systematic review and meta-analysis of 12 studies with 1009 patients

Authors:

Kazuhiko Kotani | Amirhossein Sahebkar | Corina Serban | Florina Andrica | Peter P. Toth | Steven R. Jones | Karam Kostner | Michael J. Blaha | Seth Martin | Jacek Rysz | Stephen Glasser | Kausik K. Ray | Gerald F. Watts | Dimitri P. Mikhailidis | Maciej Banach | Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group

Abstract:

Introduction

Circulating lipoprotein (a) (Lp(a)) is a recognized risk factor for cardiovascular disease (CVD). Tibolone, a synthetic steroid, may lower Lp(a) levels; however, evidence of the effects of tibolone on Lp(a) still remain to be defined. Therefore, we investigated the effects of tibolone treatment on circulating Lp(a) levels in postmenopausal women.

Methods

The search included PUBMED, Web of Science, Scopus, and Google Scholar (up to January 31st, 2015) to identify controlled clinical studies investigating the effects of oral tibolone treatment on Lp(a) levels in postmenopausal women. Random-effects meta-regression was performed using unrestricted maximum likelihood method for the association between calculated weighted mean difference (WMD) and potential moderators.

Results

Meta-analysis of data from 12 trials (16 treatment arms) suggested a significant reduction of Lp(a) levels following tibolone treatment (WMD: −25.28%, 95% confidence interval [CI]: −36.50, −14.06; p < 0.001). This result was robust in the sensitivity analysis and its significance was not influenced after omitting each of the included studies from the meta-analysis. When the studies were categorized according to the tibolone dose, there were consistent significant reductions of Lp(a) in the subsets of studies with doses <2.5 mg/day (WMD: −17.00%, 95%CI: −30.22, −3.77; p < 0.012) and 2.5 mg/day (WMD: −29.18%, 95%CI: −45.02, −13.33; p < 0.001). Likewise, there were similar reductions in the subsets of trials with follow-up either <24 months (WMD: −26.79%, 95%CI: −38.40, −15.17; p < 0.001) or ≥24 months (WMD: −23.10%, 95%CI: −40.17, −6.03; p = 0.008).

Conclusions

This meta-analysis shows that oral tibolone treatment significantly lowers circulating Lp(a) levels in postmenopausal women. Further studies are warranted to explore the mechanism of this effect and the potential value and place of tibolone or its analogues in the treatment of elevated Lp(a) in individuals at risk of CVD.

  1. Kronenberg F., Steinmetz A., Kostner G.M., Dieplinger H.
    Lipoprotein (a) in health and disease.
    Crit. Rev. Clin. Lab. Sci. 1996; 33: 495-543
  2. Lobentanz E.M., Dieplinger H.
    Biogenesis of lipoprotein (a) in human and animal hepatocytes.
    Electrophoresis. 1997; 18: 2677-2681
  3. Collaboration ERF
    Lipoprotein (a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality.
    JAMA J. Am. Med. Assoc. 2009; 302: 412
  4. Dubé J.B., Boffa M.B., Hegele R.A., Koschinsky M.L.
    Lipoprotein (a): more interesting than ever after 50 years.
    Curr. Opin. Lipidol. 2012; 23: 133-140
  5. Kostner K.M., März W., Kostner G.M.
    When should we measure lipoprotein (a)?.
    Eur. Heart J. 2013; 34: 3268-3276
  6. Banach M., Aronow W.S. ,Serban C. ,Sahabkar A., Rysz J. ,Voroneanu L., Covic A.
    Lipids, blood pressure and kidney update 2014.
    Pharmacol. Res. 2015; 95–96C: 111-125
  7. Angles-Cano E., Díaz A.D.L.P., Loyau S.
    Inhibition of fibrinolysis by lipoprotein (a).
    Ann. N. Y. Acad. Sci. 2001; 936: 261-275
  8. Siegel G., Malmsten M., Ermilov E.
    Anionic biopolyelectrolytes of the syndecan/perlecan superfamily: physicochemical properties and medical significance.
    Adv. Colloid Interface Sci. 2014; 205: 275-318
  9. Naruszewicz M., Giroux L.-M., Davignon J.
    Oxidative modification of Lp (a) causes changes in the structure and biological properties of apo (a).
    Chem. Phys. Lipids. 1994; 67: 167-174
  10. Tsimikas S., Hall J.L.
    Anionic biopolyelectrolytes of the syndecan/perlecan superfamily: physicochemical properties and medical significance.
    J. Am. Coll. Cardiol. 2012; 60: 716-721
  11. Klezovitch O., Edelstein C., Scanu A.M.
    Stimulation of interleukin-8 production in human THP-1 macrophages by apolipoprotein (a) evidence for a critical involvement of elements in its C-terminal domain.
    J. Biological Chem. 2001; 276: 46864-46869
  12. Kolski B., Tsimikas S.
    Emerging therapeutic agents to lower lipoprotein (a) levels.
    Curr. Opin. Lipidol. 2012; 23: 560-568
  13. Jacobson T.A.
    Lipoprotein (a), cardiovascular disease, and contemporary management.
    in: Mayo Clinic Proceedings. Elsevier, 2013: 1294-1311
  14. Bos S., Yayha R., van Lennep J.E.R.
    Latest developments in the treatment of lipoprotein (a).
    Curr. Opin. Lipidol. 2014; 25: 452-460
  15. Enkhmaa B., Anuurad E., Zhang W., Tran T., Berglund L.
    Lipoprotein (a): genotype–phenotype relationship and impact on atherogenic risk.
    Metab. Syndr. Relat. Disord. 2011; 9: 411-418
  16. Hegele R.A., Freeman M., Langer A., Connelly P., Armstrong P.
    Acute reduction of lipoprotein (a) by tissue-type plasminogen activator.
    Circulation. 1992; 85: 2034-2038
  17. Hong S.J., Seo H.S., Park C.G., Rha S.W., Oh D.J., Ro Y.M.
    Serially increasing change in lipoprotein (a) concentration has predictive value in acute vascular events.
    Ann. Clin. Biochem. 2005; 42: 285-291
  18. Ramharack R., Barkalow D., Spahr M.A.
    Dominant negative effect of TGF-β1 and TNF-α on basal and IL-6–induced lipoprotein (a) and apolipoprotein (a) mRNA expression in primary monkey hepatocyte cultures.
    Arterioscler. Thromb. Vasc. Biol. 1998; 18: 984-990
  19. Nordestgaard B.G., Chapman M.J., Ray K., Borén J., Andreotti F., Watts G.F., et al.
    Lipoprotein (a) as a cardiovascular risk factor: current status.
    Eur. Heart J. 2010; 31: 2844-2853
  20. Parhofer K.
    Lipoprotein (a): medical treatment options for an elusive molecule.
    Curr. Pharm. Des. 2011; 17: 871
  21. Albertazzi P., Di Micco R., Zanardi E.
    Tibolone: a review.
    Maturitas. 1998; 30: 295-305
  22. Modelska K., Cummings S.
    Tibolone for postmenopausal women: systematic review of randomized trials.
    J. Clin. Endocrinol. Metab. 2002; 87: 16-23
  23. Markiewicz L., Gurpide E.
    In vitro evaluation of estrogenic, estrogen antagonistic and progestagenic effects of a steroidal drug (Org OD-14) and its metabolites on human endometrium.
    J. Steroid Biochem. 1990; 35: 535-541
  24. Kloosterboer H.
    Tibolone: a steroid with a tissue-specific mode of action.
    J. Steroid Biochem. Mol. Biol. 2001; 76: 231-238
  25. Gaeta G., Lanero S., Barra S., Silvestri N., Cuomo V., Materazzi C., et al.
    Sex hormones and lipoprotein (a) concentration.
    Expert Opin. Investig. Drugs. 2011; 20: 221-238
  26. Moher D., Liberati A., Tetzlaff J., Altman D.G., Group P
    Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
    BMJ. 2009; 339: b2535
  27. Higgins J., Green S.
    Cochrane Handbook for Systematic Reviews of Interventions Version 5.0. 2.
    The Cochrane Collaboration, 2009 ([updated September 2009])
    www.cochrane-handbook.org
    (accessed 18.05.09) 2013
  28. Borenstein M., Hedges L., Higgins J., Rothstein H.
    Comprehensive Meta-analysis Version 2.
    Biostat, Englewood, NJ2005: 104
  29. Hozo S.P., Djulbegovic B., Hozo I.
    Estimating the mean and variance from the median, range, and the size of a sample.
    BMC Med. Res. Methodol. 2005; 5: 13
  30. Sahebkar A.
    Does PPARγ2 gene Pro12Ala polymorphism affect nonalcoholic fatty liver disease risk? Evidence from a meta-analysis.
    DNA Cell Biol. 2013; 32: 188-198
  31. Sahebkar A.
    Are curcuminoids effective C-Reactive Protein-Lowering agents in clinical practice? evidence from a Meta-Analysis.
    Phytother. Res. 2014; 28: 633-642

  32. Duval S., Tweedie R.
    Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis.
    Biometrics. 2000; 56: 455-463
  33. Bjarnason N.H., Bjarnason K., Haarbo J., Bennink H.J.C.
    Christiansen C.
    Tibolone: influence on markers of cardiovascular disease.
    J. Clin. Endocrinol. Metab. 1997; 82: 1752-1756,
  34. Gallagher J., Baylink D.J., Freeman R., McClung M.
    Prevention of bone loss with tibolone in postmenopausal women: results of two randomized, double-blind, placebo-controlled, dose-finding studies.
    J. Clin. Endocrinol. Metab. 2001; 86: 4717-4726
  35. Kalogeropoulos S., Petrogiannopoulos C., Gagos S., Kampas N., Kalogeropoulos G.
    The influence of 5-year therapy with tibolone on the lipid profile in postmenopausal women with mild hypercholesterolemia.
    Gynecol. Endocrinol. 2004; 18: 227-232
  36. Kroiss R., Fentiman I., Helmond F., Rymer J., Foidart J.-M., Bundred N., et al.
    The effect of tibolone in postmenopausal women receiving tamoxifen after surgery for breast cancer: a randomised, double-blind, placebo-controlled trial.
    BJOG An Int. J. Obstetrics Gynaecol. 2005; 112: 228-233
  37. Lloyd G., McGing E., Cooper A., Patel N., Lumb P., Wierzbicki A., et al.
    A randomised placebo controlled trial of the effects of tibolone on blood pressure and lipids in hypertensive women.
    J. Hum. Hypertens. 2000; 14: 99-104
  38. Milner M.H., Sinnott M.M., Cooke T.M, Kelly A., McGill T., Harrison R.F.
    A 2-year study of lipid and lipoprotein changes in postmenopausal women with tibolone and estrogen-progestin.
    Obstetrics Gynecol. 1996; 87: 593-599
  39. Ostberg J.E., Damjanovic T., Dimkovic N., Byrne D., Mikhailidis D.P., Prelevic G.M.
    Effect of tibolone on markers of cardiovascular disease risk in postmenopausal women undergoing hemodialysis: a pilot study.
    Fertil. Steril. 2004; 81: 1624-1631
  40. Perrone G., Capri O., Galoppi P., Brunelli R., Bevilacqua E., Ceci F., et al.
    Effects of either tibolone or continuous combined transdermal estradiol with medroxyprogesterone acetate on coagulatory factors and lipoprotein (a) in menopause.
    Gynecol. Obstet. Invest. 2009; 68: 33-39
  41. Von Eckardstein A., Schmiddem K., Hövels A., Gülbahçe E., Schuler-Lüttmann S., Elbers J., et al.
    Lowering of HDL cholesterol in post-menopausal women by tibolone is not associated with changes in cholesterol efflux capacity or paraoxonase activity.
    Atherosclerosis. 2001; 159: 433-439
  42. Von Eckardstein A., Crook D., Elbers J., Ragoobir J., Ezeh B., Helmond F., et al.
    Tibolone lowers high density lipoprotein cholesterol by increasing hepatic lipase activity but does not impair cholesterol efflux.
    Clin. Endocrinol. 2003; 58: 49-58
  43. Anedda F.M. ,Velati A., Lello S., Orrù M., Paoletti A.M., Melis G.B., et al.
    Observational study on the efficacy of tibolone in counteracting early carotid atherosclerotic lesions in postmenopausal women.
    Hormone Res. 2003; 61: 47-52
  44. Demirol A., Guven S., Guven E.S.G., Kirazli S., Gurgan T., Ayhan A.
    Comparison of the effects of tibolone and estrogen therapy on hemostasis in surgical menopause: a randomized, double-blind, placebo-controlled study.
    Fertil. Steril. 2007; 87: 842-848
  45. Collaboration C
    Cochrane handbook for Systematic Reviews of Interventions Version 5.1. 0.
    2011
    http://handbook.cochrane.org
    ([accessed 2014-03-12][WebCite Cache] 2013)
  46. Bochem A., Kuivenhoven J., Stroes E.
    The promise of cholesteryl ester transfer protein (CETP) inhibition in the treatment of cardiovascular disease.
    Curr. Pharm. Des. 2013; 19: 3143-3149
  47. Norata G.D. ,Ballantyne C.M., Catapano A.L.
    New therapeutic principles in dyslipidaemia: focus on LDL and Lp (a) lowering drugs.
    Eur. Heart J. 2013; 34: 1783-1789
  48. Sahebkar A., Watts G.F.
    New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect?.
    Cardiovasc. Drugs Ther. 2013; 27: 559-567
  49. Banach M., Rizzo M., Obradovic M., Montalto G., Rysz J.,P., Mikhailidis D., et al.
    PCSK9 inhibition-a novel mechanism to treat lipid disorders?.
    Curr. Pharm. Des. 2013; 19: 3869-3877
  50. Dragan S., Serban M.C., Banach M., Proprotein convertase subtilisin/kexin 9 inhibitors: an emerging lipid-lowering therapy?.
    J. Cardiovasc. Pharmacol. Ther. 2015; 20: 157-168
  51. Taub R. ,Chiang E., Chabot-Blanchet M., Kelly M.J., Reeves R.A., Guertin M.-C., et al.
    Lipid lowering in healthy volunteers treated with multiple doses of MGL-3196, a liver-targeted thyroid hormone receptor-β agonist.
    Atherosclerosis. 2013; 230: 373-380
  52. Banach M., Serban C., Aronow W.S., Rysz J., Dragan S., Lerma E.V., et al.
    Lipid, blood pressure and kidney update 2013.
    Int. Urology Nephrol. 2014; 46: 947-961
  53. Banach M., Rizzo M., Toth P.P., Farnier M., Davidson M.H., Al-Rasadi K., et al.
    Statin intolerance – an attempt at a unified definition. Position paper from an International Lipid Expert Panel.
    Arch. Med. Sci. 2015; 11: 1-23
  54. McCarty M.F.
    Estrogen agonists/antagonists may down-regulate growth hormone signaling in hepatocytes–An explanation for their impact on IGF-I, IGFBP-1, and lipoprotein (a).
    Med. Hypotheses. 2003; 61: 335-339
  55. Hoover-Plow J., Huang M.
    Lipoprotein (a) metabolism: potential sites for therapeutic targets.
    Metabolism: Clin. Exp. 2013; 62: 479-491
  56. Zmuda J.M., Thompson P.D., Dickenson R., Bausserman L.L.
    Testosterone decreases lipoprotein (a) in men.
    Am. J. Cardiol. 1996; 77: 1244-1247
  57. Kotani K., Sakane N.
    Carotid intima-media thickness in asymptomatic subjects with low lipoprotein (a) levels.
    J. Clin. Med. Res. 2012; 4: 130
  58. Ishikawa S., Kotani K., Kario K., Kayaba K., Gotoh T., Nakamura Y., et al.
    Inverse association between serum lipoprotein (a) and cerebral hemorrhage in the Japanese population.
    Thrombosis Res. 2013; 131: e54-e58
  59. Kamstrup P.R., Nordestgaard B.G.
    Lipoprotein (a) concentrations, isoform size, and risk of type 2 diabetes: a Mendelian randomisation study.
    Lancet Diabetes Endocrinol. 2013; 1: 220-227
  60. Dragan S., Serban C., Banach M.
    Can we change the functionality of HDL cholesterol with nonpharmacological and pharmacologica, l agents?.
    Curr. Med. Chem. 2014; 21: 2927-2946
  61. Otocka-Kmiecik A., Mikhailidis D.P., Nicholls S.J., Davidson M., Rysz J., Banach M.
    Dysfunctional HDL: a novel important diagnostic and therapeutic target in cardiovascular disease?.
    Prog. Lipid Res. 2012; 51: 314-324
  62. Prelevic G.M.Kwong P., Byrne D.J., Jagroop I.A., Ginsburg J., Mikhailidis D.P.
    A cross-sectional study of the effects of hormon replacement therapy on the cardiovascular disease risk profile in healthy postmenopausal women.
    Fertil. Steril. 2002; 77: 945-951
  63. Biglia N., Maffei S., Lello S., Nappi R.E.
    Tibolone in postmenopausal women: a review based on recent randomised controlled clinical trials.
    Gynecol. Endocrinol. 2010; 26: 804-814
  64. Cummings S.R., Ettinger B., Delmas P.D., Kenemans P., Stathopoulos V., Verweij P., et al.
    The effects of tibolone in older postmenopausal women.
    N. Engl. J. Med. 2008; 359: 697-708
  65. Hudita D., Posea C. ,Ceausu I., Rusu M.
    Efficacy and safety of oral tibolone 1.25 or 2.5 mg/day vs. placebo in postmenopausal women.
    Eur. Rev. Med. Pharmacol. Sci. 2003; 7: 117-126
  66. Morais-Socorro M., Cavalcanti M.A., Martins R., Neto Francisco P., Rezende A., Azevedo G., Almeida M., et al.
    Safety and efficacy of tibolone and menopausal transition: a randomized, double-blind placebo-controlled trial.
    Gynecol. Endocrinol. 2012; 28: 483-487