Effects of Quercetin on Blood Pressure: A Systematic Review and Meta‐Analysis of Randomized Controlled Trials

Authors:

Maria‐Corina Serban, MD, PhD | Amirhossein Sahebkar, PharmD | Alberto Zanchetti, MD, PhD | Dimitri P. Mikhailidis, MD, PhD | George Howard, DrPH | Diana Antal, PharmD | Florina Andrica, PhD | Ali Ahmed, MD, MPH | Wilbert S. Aronow, MD | Paul Muntner, PhD | Gregory Y. H. Lip, MD | Ian Graham, MD, PhD | Nathan Wong, MD, PhD | Jacek Rysz, MD, PhD | Maciej Banach, MD, PhD, FNLA, FAHA, FESC, FASA | for the Lipid and Blood Pressure Meta‐analysis Collaboration (LBPMC) Group
First published: 2016 Jul 12| https://doi.org/10.1161%2FJAHA.115.002713

Abstract:

Background

Quercetin, the most abundant dietary flavonol, has antioxidant effects in cardiovascular disease, but the evidence regarding its effects on blood pressure (BP) has not been conclusive. We assessed the impact of quercetin on BP through a systematic review and meta‐analysis of available randomized controlled trials.

Methods and Results

We searched PUBMED, Cochrane Library, Scopus, and EMBASE up to January 31, 2015 to identify placebo‐controlled randomized controlled trials investigating the effect of quercetin on BP. Meta‐analysis was performed using either a fixed‐effects or random‐effect model according to I2 statistic. Effect size was expressed as weighted mean difference (WMD) and 95% CI. Overall, the impact of quercetin on BP was reported in 7 trials comprising 9 treatment arms (587 patients). The results of the meta‐analysis showed significant reductions both in systolic BP (WMD: −3.04 mm Hg, 95% CI: −5.75, −0.33, P=0.028) and diastolic BP (WMD: −2.63 mm Hg, 95% CI: −3.26, −2.01, P<0.001) following supplementation with quercetin. When the studies were categorized according to the quercetin dose, there was a significant systolic BP and diastolic BP‐reducing effect in randomized controlled trials with doses ≥500 mg/day (WMD: −4.45 mm Hg, 95% CI: −7.70, −1.21, P=0.007 and −2.98 mm Hg, 95% CI: −3.64, −2.31, P<0.001, respectively), and lack of a significant effect for doses <500 mg/day (WMD: −1.59 mm Hg, 95% CI: −4.44, 1.25, P=0.273 and −0.24 mm Hg, 95% CI: −2.00, 1.52, P=0.788, respectively), but indirect comparison tests failed to significant differences between doses.

Conclusions

The results of the meta‐analysis showed a statistically significant effect of quercetin supplementation in the reduction of BP, possibly limited to, or greater with dosages of >500 mg/day. Further studies are necessary to investigate the clinical relevance of these results and the possibility of quercetin application as an add‐on to antihypertensive therapy.

Full content publication available for download

  1. Balentine DA, Dwyer JT, Erdman JW, Ferruzzi MG, Gaine PC, Harnly JM, Kwik‐Uribe CL. Recommendations on reporting requirements for flavonoids in researchAm J Clin Nutr. 2015;101:1113–1125. 
  2. 2. Serban C, Sahebkar A, Ursoniu S, Andrica F, Banach M. Effect of sour tea (Hibiscus sabdariffa L.) on arterial hypertension: a systematic review and meta‐analysis of randomized controlled trialsJ Hypertens. 2015;33:1119–1127. 
  3. 3. Ursoniu S, Sahebkar A, Andrica F, Serban C, Banach M. Effects of flaxseed supplements on blood pressure: a systematic review and meta‐analysis of controlled clinical trialClin Nutr. 2016;35:615–625. 
  4. 4. Banach M, Aronow WS, Serban MC, Sahebkar A, Rysz J, Voroneanu L, Covic A. Lipids, blood pressure and kidney update 2014Pharmacol Res. 2015;95‐96c:111–125. 
  5. 5. Lairon D, Amiot MJ. Flavonoids in food and natural antioxidants in wineCurr Opin Lipidol. 1999;10:23–28. 
  6. 6. Hertog MG, Feskens EJ, Kromhout D, Hollman P, Katan M. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly StudyLancet. 1993;342:1007–1011. 
  7. 7. Kelly GS. Quercetin. MonographAltern Med Rev. 2011;16:172–194. 
  8. 8. Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiologyNutr Res. 2004;24:851–874.
  9. 9. Perez‐Vizcaino F, Duarte J, Santos‐Buelga C. The flavonoid paradox: conjugation and deconjugation as key steps for the biological activity of flavonoidsJ Sci Food Agric. 2012;92:1822–1825.
  10. 10. Men K, Duan X, Wei XW, Gou ML, Huang MJ, Chen LJ, Qian ZY, Wei YQ. Nanoparticle‐delivered quercetin for cancer therapyAnticancer Agents Med Chem. 2014;14:826–832. 
  11. 11. Russo GL, Russo M, Spagnuolo C, Tedesco I, Bilotto S, Iannitti R, Palumbo R. Quercetin: a pleiotropic kinase inhibitor against cancerCancer Treat Res. 2014;159:185–205.
  12. 12. Hubbard G, Stevens J, Cicmil M, Sage T, Jordan P, Williams C, Lovegrove J, Gibbins J. Quercetin inhibits collagen‐stimulated platelet activation through inhibition of multiple components of the glycoprotein VI signaling pathwayJ Thromb Haemost. 2003;1:1079–1088.
  13. 13. Chirumbolo S. Quercetin as a potential anti‐allergic drug: which perspectives? Iran J Allergy Asthma Immunol. 2011;10:139–140. 
  14. 14. Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic miceLife Sci. 2014;109:8–14. 
  15. 15. Nabavi SF, Russo GL, Daglia M, Nabavi SM. Role of quercetin as an alternative for obesity treatment: you are what you eat! Food Chem. 2015;179C:305–310. 
  16. 16. Chirumbolo S. The role of quercetin, flavonols and flavones in modulating inflammatory cell functionInflamm Allergy Drug Targets. 2010;9:263–285. 
  17. 17. Pan H‐C, Jiang Q, Yu Y, Mei J‐P, Cui Y‐K, Zhao W‐J. Quercetin promotes cell apoptosis and inhibits the expression of MMP‐9 and fibronectin via the AKT and ERK signalling pathways in human glioma cellsNeurochem Int. 2015;80:60–71. 
  18. 18. Kleemann R, Verschuren L, Morrison M, Zadelaar S, van Erk MJ, Wielinga PY, Kooistra T. Anti‐inflammatory, anti‐proliferative and anti‐atherosclerotic effects of quercetin in human in vitro and in vivo modelsAtherosclerosis. 2011;218:44–52. 
  19. 19. Duarte J, Pérez‐Palencia R, Vargas F, Angeles Ocete M, Pérez‐Vizcaino F, Zarzuelo A, Tamargo J. Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive ratsBr J Pharmacol. 2001;133:117–124. 
  20. 20. Gao H, Chen C, Huang S, Li B. Quercetin attenuates the progression of monocrotaline‐induced pulmonary hypertension in ratsJ Biomed Res. 2012;26:98–102. 
  21. 21. Garcia‐Saura MF, Galisteo M, Villar IC, Bermejo A, Zarzuelo A, Vargas F, Duarte J. Effects of chronic quercetin treatment in experimental renovascular hypertensionMol Cell Biochem. 2005;270:147–155. 
  22. 22. Mackraj I, Govender T, Ramesar S. The antihypertensive effects of quercetin in a salt‐sensitive model of hypertensionJ Cardiovasc Pharmacol. 2008;51:239–245. 
  23. 23. Montenegro MF, Neto‐Neves EM, Dias‐Junior CA, Ceron CS, Castro MM, Gomes VA, Kanashiro A, Tanus‐Santos JE. Quercetin restores plasma nitrite and nitroso species levels in renovascular hypertensionNaunyn Schmiedebergs Arch Pharmacol. 2010;382:293–301.
  24. 24. Morales‐Cano D, Menendez C, Moreno E, Moral‐Sanz J, Barreira B, Galindo P, Pandolfi R, Jimenez R, Moreno L, Cogolludo A, Duarte J, Perez‐Vizcaino F. The flavonoid quercetin reverses pulmonary hypertension in ratsPLoS One. 2014;9:e114492. 
  25. 25. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceuticalEur J Pharmacol. 2008;585:325–337. 
  26. 26. Islam MA, Schmidt RW, Gunaseelan S, Sanchez A. An update on the cardiovascular effects of quercetin, a plant flavonoidCurr Nutr Food Sci. 2014;10:36–48. 
  27. 27. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.0. 2 [updated September 2009]. The Cochrane collaboration, 2009. 2013. Available at: www.cochrane-handbook.org/. Accessed May 18, 2009. 
  28. 28. Borenstein M, Hedges L, Higgins J, Rothstein H. Comprehensive Meta‐Analysis Version 2. Englewood, NJ: Biostat; 2005:104.
  29. 29. Song F, Altman DG, Glenny A‐M, Deeks JJ. Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta‐analysesBMJ. 2003;326:472. 
  30. 30. Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons in meta‐analysis of randomized controlled trialsJ Clin Epidemiol. 1997;50:683–691.
  31. 31. Duval S, Tweedie R. Trim and fill: a simple funnel‐plot–based method of testing and adjusting for publication bias in meta‐analysisBiometrics. 2000;56:455–463.
  32. 32. Javadi F, Eghtesadi S, Ahmadzadeh A, Aryaeian N, Zabihiyeganeh M, Foroushani AR, Jazayeri S. The effect of quercetin on plasma oxidative status, C‐reactive protein and blood pressure in women with rheumatoid arthritisInt J Prev Med. 2014;5:293.
  33. 33. Zahedi M, Ghiasvand R, Feizi A, Asgari G, Darvish L. Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: a double‐blind randomized controlled clinical trialInt J Prev Med. 2013;4:777. 
  34. 34. Conquer J, Maiani G, Azzini E, Raguzzini A, Holub B. Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjectsJ Nutr. 1998;128:593–597. 
  35. 35. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T. Quercetin reduces blood pressure in hypertensive subjectsJ Nutr. 2007;137:2405–2411. 
  36. 36. Egert S, Bosy‐Westphal A, Seiberl J, Kürbitz C, Settler U, Plachta‐Danielzik S, Wagner AE, Frank J, Schrezenmeir J, Rimbach G. Quercetin reduces systolic blood pressure and plasma oxidised low‐density lipoprotein concentrations in overweight subjects with a high‐cardiovascular disease risk phenotype: a double‐blinded, placebo‐controlled cross‐over studyBr J Nutr. 2009;102:1065–1074. 
  37. 37. Lee K‐H, Park E, Lee H‐J, Kim M‐O, Cha Y‐J, Kim J‐M, Lee H, Shin M‐J. Effects of daily quercetin‐rich supplementation on cardiometabolic risks in male smokersNutr Res Pract. 2011;5:28–33.
  38. 38. Pfeuffer M, Auinger A, Bley U, Kraus‐Stojanowic I, Laue C, Winkler P, Rüfer C, Frank J, Bösch‐Saadatmandi C, Rimbach G. Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoformsNutr Metab Cardiovasc Dis. 2013;23:403–409. 
  39. 39. Mahmoud MF, Hassan NA, El Bassossy HM, Fahmy A. Quercetin protects against diabetes‐induced exaggerated vasoconstriction in rats: effect on low grade inflammationPLoS One. 2013;8:e63784. 
  40. 40. Larson AJ, Symons JD, Jalili T. Quercetin: a treatment for hypertension?—a review of efficacy and mechanismsPharmaceuticals. 2010;3:237–250.
  41. 41. Larson AJ, Symons JD, Jalili T. Therapeutic potential of quercetin to decrease blood pressure: review of efficacy and mechanismsAdv Nutr. 2012;3:39–46.
  42. 42. Häckl L, Cuttle G, Dovichi S, Lima‐Landman M, Nicolau M. Inhibition of angiotensin‐converting enzyme by quercetin alters the vascular response to bradykinin and angiotensin IPharmacology. 2002;65:182–186. 
  43. 43. Yamamoto Y, Oue E. Antihypertensive effect of quercetin in rats fed with a high‐fat high‐sucrose dietBiosci Biotechnol Biochem. 2006;70:933–939. 
  44. 44. Nicholson SK, Tucker GA, Brameld JM. Effects of dietary polyphenols on gene expression in human vascular endothelial cellsProc Nutr Soc. 2008;67:42–47. 
  45. 45. Sanchez M, Galisteo M, Vera R, Villar IC, Zarzuelo A, Tamargo J, Pérez‐Vizcaíno F, Duarte J. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive ratsJ Hypertens. 2006;24:75–84. 
  46. 46. Sahebkar A, Serban MC, Gluba‐Brzózka A, Mikhailidis DP, Cicero AF, Rysz J, Banach M. Lipid‐modifying effects of nutraceuticals: An evidence‐based approachNutrition 2016; doi:10.1016/j.nut.2016.04.007. 
  47. 47. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studiesAm J Clin Nutr. 2005;81:230S–242S. 
  48. 48. Cao J, Zhang Y, Chen W, Zhao X. The relationship between fasting plasma concentrations of selected flavonoids and their ordinary dietary intakeBr J Nutr. 2010;103:249–255. 
  49. 49. Lee‐Hilz YY, Stolaki M, van Berkel WJ, Aarts JM, Rietjens IM. Activation of EpRE‐mediated gene transcription by quercetin glucuronides depends on their deconjugationFood Chem Toxicol. 2008;46:2128–2134. 
  50. 50. Egert S, Boesch‐Saadatmandi C, Wolffram S, Rimbach G, Müller MJ. Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotypeJ Nutr. 2010;140:278–284. 
  51. 51. Shimoi K, Saka N, Nozawa R, Sato M, Amano I, Nakayama T, Kinae N. Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammationDrug Metab Dispos. 2001;29:1521–1524. 
  52. 52. McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adultsAm J Clin Nutr. 2012;95:454–464. 
  53. 53. Vogiatzoglou A, Mulligan AA, Lentjes MA, Luben RN, Spencer JP, Schroeter H, Khaw KT, Kuhnle GG. Flavonoid intake in European adults (18 to 64 years)PLoS One. 2015;10:e0128132. 
  54. 54. Harwood M, Danielewska‐Nikiel B, Borzelleca J, Flamm G, Williams G, Lines T. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic propertiesFood Chem Toxicol. 2007;45:2179–2205. 
  55. 55. EFSA panel on dietetic products, nutrition and allergies (NDA). Scientific opinion on the substantiation of health claims related to quercetin and protection of DNA, proteins and lipids from oxidative damage (ID 1647), “cardiovascular system” (ID 1844), “mental state and performance” (ID 1845), and “liver, kidneys” (ID 1846) pursuant to article 13(1) of regulation (EC) no 1924/2006EFSA J. 2011;9:2067 [2015 pp.] 
  56. 56. Peluso I, Palmery M. Flavonoids at the pharma‐nutrition interface: is a therapeutic index in demand? Biomed Pharmacother. 2015;71:102–107. 
  57. 57. Michalska M, Gluba A, Mikhailidis DP, Nowak P, Bielecka‐Dabrowa A, Rysz J, Banach M. The role of polyphenols in cardiovascular diseaseMed Sci Monit. 2010;16:RA110–RA119. 
  58. 58. Hodek P, Trefil P, Stiborová M. Flavonoids—potent and versatile biologically active compounds interacting with cytochromes P450Chem Biol Interact. 2002;139:1–21.